
PP-LCNet: A Lightweight CPU Convolutional Neural Network

Cheng Cui, Tingquan Gao, Shengyu Wei, Yuning Du,
Ruoyu Guo, Shuilong Dong, Bin Lu, Ying Zhou, Xueying Lv,

Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma
Baidu Inc.

{cuicheng01, gaotingquan, weishengyu, duyuning} @baidu.com

Abstract

We propose a lightweight CPU network based on the
MKLDNN acceleration strategy, named PP-LCNet, which
improves the performance of lightweight models on multi-
ple tasks. This paper lists technologies which can improve
network accuracy while the latency is almost constant. With
these improvements, the accuracy of PP-LCNet can greatly
surpass the previous network structure with the same infer-
ence time for classification. As shown in Figure 1, it outper-
forms the most state-of-the-art models. And for downstream
tasks of computer vision, it also performs very well, such as
object detection, semantic segmentation, etc. All our exper-
iments are implemented based on PaddlePaddle1. Code and
pretrained models are available at PaddleClas2.

1. Introduction

In the past few years, Convolutional Neural Net-
works (CNNs) represent the workhorses of the most
current computer vision applications, including im-
age classification[1, 2], object detection[3], attention
prediction[4], target tracking[5], action recognition[6], se-
mantic segmentation[7, 8], salient object detection[9] and
edge detection[10].

As the model feature extraction capability increases and
the number of model parameters and FLOPs get larger, it
becomes difficult to achieve fast inference speed on mo-
bile devices based ARM architecture or CPU devices based
x86 architecture. In this case, many excellent mobile net-
works have been proposed, but due to the limitations of the
MKLDNN, the speed of these networks is not ideal on the
Intel CPU with MKLDNN enabled. In this paper, we re-
think the lightweight models elements for network designed
on Intel-CPU. In particular, we consider the following three
fundamental questions. (i) How to promote the network to

1https://github.com/PaddlePaddle
2https://github.com/PaddlePaddle/PaddleClas

Figure 1. Comparing the accuracy-latency of different mobile se-
ries models. Latency tested on Intelr Xeonr Gold 6148 Processor
with batch size of 1 and MKLDNN enabled, the number of thread
is 10.

learn stronger feature presentations without increasing la-
tency. (ii) What are the elements to improve the accuracy of
lightweight models on CPU. (iii) How to effectively com-
bine different strategies for designing lightweight models
on CPU.

Our main contribution is summarizing a series of meth-
ods to improve the accuracy without increase of inference
time, and how to combine these methods to get a better bal-
ance of accuracy and speed. Based on this, we come up with
several general rules for designing lightweight CNNs, and
provide new ideas for other researchers to build CNNs on
CPU devices. Furthermore, it can provide neural architec-
ture search researchers with new ideas when constructing
the search space, so as to get better models faster.

ar
X

iv
:2

10
9.

15
09

9v
1 

 [
cs

.C
V

] 
 1

7 
Se

p 
20

21



Figure 2. A detailed view of PP-LCNet. The dotted box represents optional modules.The stem part uses standard 3 × 3 convolution.
DepthSepConv means depth-wise separable convolutions, DW means depth-wise convolution, PW means point-wise convolution, GAP
means Global Average Pooling.

2. Related Works

To promote the capabilities of the model, current works
usually follow two types of methodologies. One is based on
manually-designed CNN architecture, the other is based on
Neural Architecture Search (NAS)[11].

Manually-designed Architecture. The VGG[12] ex-
hibits a simple yet effective strategy of constructing very
deep networks: stacking blocks with the same dimen-
sion. GoogLeNet[13] constructs an Inception block, which
includes four parallel operations: 1 × 1 convolution,
3 × 3 convolution, 5 × 5 convolution and max pool-
ing. GoogLeNet makes the convolutional neural net-
work light enough, then more and more lighter networks
emerge. MobileNetV1[14] replaces the standard convo-
lution by depthwise and pointwise convolutions, which
greatly reduces the amount of parameters and FLOPs of
the model. The author of MobileNetV2[15] proposed the
Inverted block, which further reduces the FLOPs of the
model and at the same time improves the performance of
the model. ShuffleNetV1/V2[16][17] exchanges informa-
tion through channel shuffle, which reduces the unneces-
sary overhead of the network structure. The author of
GhostNet[18] proposed a novel Ghost module that can gen-
erate more feature maps with fewer parameters to improve

the overall performance of the model.
Neural Architecture Search. With the development of

GPU hardware, the main point has shifted from a manu-
ally designed architecture to an architecture that adaptively
performs a systematic search for specific tasks. A ma-
jority of NAS-generated networks use the similar search
space to MobileNetV2[15], including EfficientNet[19],
MobileNetV3[20], FBNet[21], DNANet[22], OFANet[23]
and so on. The MixNet[24] proposed to hybridize depth-
wise convolutions of different kernel size in one layer.
NAS-generated networks relies on manually-generated
block, such as BottleNeck[25], Inverted-block[15] and so
on. Our approach can reduce search space and improve
search efficiency for neural architecture search and poten-
tially improve the overall performance, which can be stud-
ied in future work.

3. Approach

While there are many lightweight networks whose in-
ference speed is fast on ARM-based devices, few networks
take into account the speed on Intel CPU, especially when
acceleration strategies such as MKLDNN enabled. Many
methods to improve model accuracy will not increase the in-
ference time much on ARM devices, however, when switch-

2



Operator Kernel Size Stride Input Output SE

Conv2D 3× 3 2 2242 × 3 1122 × 16 -
DepthSepConv 3× 3 1 1122 × 16 1122 × 32 -
DepthSepConv 3× 3 2 1122 × 32 562 × 64 -
DepthSepConv 3× 3 1 562 × 64 562 × 64 -
DepthSepConv 3× 3 2 562 × 64 282 × 128 -
DepthSepConv 3× 3 1 282 × 128 282 × 128 -
DepthSepConv 3× 3 2 282 × 128 142 × 256 -

5 × DepthSepConv 5× 5 1 142 × 256 142 × 256 -
DepthSepConv 5× 5 2 142 × 256 72 × 512 X
DepthSepConv 5× 5 1 72 × 512 72 × 512 X

GAP 7× 7 1 72 × 512 12 × 512 -
Conv2d, NBN 1× 1 1 12 × 512 12 × 1280 -

Table 1. Architecture details of PP-LCNet. SE denotes whether there is a Squeeze-and-Excitation in that block. NBN denotes no batch
normalization.

ing to Intel CPU devices, the situation will be a little dif-
ferent. Here we have summarized some methods that can
improve the performance of the model with little increase
of inference time. These methods will be described in
details below. We used the DepthSepConv mentioned by
MobileNetV1[14] as our basic block. This block does not
have operations such as shortcuts, so there are no additional
operations such as concat or elementwise-add, these oper-
ations will not only slow down the inference speed of the
model, but also will not improve the accuracy on a small
model. Furthermore, this block has been deeply optimized
by the Intel CPU acceleration library, and the inference
speed can surpass other lightweight blocks such as inverted-
block or shufflenet-block. We stack these blocks to form
a BaseNet similar to MobileNetV1[14]. We combine the
BaseNet and some of the existing technologies to a more
powerful network, namely PP-LCNet.

3.1. Better activation function

As we all know, the quality of the activation function of-
ten determines the performance of the network. Since the
activation function of network is changed from Sigmoid to
ReLU, the performance of the network has been greatly im-
proved. In recent years, more and more activation functions
have emerged that go beyond ReLU. After EfficientNet[19]
used the Swish activation function to show better perfor-
mance, the author of MobileNetV3[20] upgraded it to H-
Swish, thus avoiding a large number of exponential opera-
tions. Since then, many lightweight networks also use this
activation function. We also replaced the activation function
in BaseNet from ReLU to H-Swish. The performance has
been greatly improved, while the inference time has hardly
changed.

3.2. SE modules at appropriate positions

The SE module[26] has been used by a large number
of networks since its being proposed. This module also
helped SENet[26] winning the 2017 ImageNet[27] classi-
fication competition. It does a good job of weighting the
network channels for better features, and its speed improve-
ment version is also used in many lightweight networks
such as MobileNetV3[20]. However, on Intel CPUs, the SE
module[26] increases the inference time, so that we cannot
use it for the whole network. In fact, we have done a lot of
experiments and observed that when the SE module[26] is
located at the end of the network, it can play a better role.
So we just add the SE module[26] to the blocks near the tail
of the network. This results in a better accuracy-speed bal-
ance. As with MobileNetV3[20], the activation functions
for the two layers of the SE module[26] are ReLU and H-
Sigmoid respectively.

3.3. Larger convolution kernels

The size of the convolution kernel often affects the final
performance of the network. In MixNet[24], the authors
analysed the effect of differently sized convolution kernels
on the performance of the network, and ended up mixing
different sizes of convolutional kernels in the same layer of
the network. However, such a mixture slows down the in-
ference speed of the model, so we try to use only one size
of convolution kernel in the single layer, and ensure that a
large convolution kernel is used in the case of low latency
and high accuracy. We experimentally find that, similar to
the placement of the SE module[26], replacing the 3 × 3
convolutional kernels with only the 5×5 convolutional ker-
nels at the tail of the network would achieve the effect of
replacing almost all layers of the network, so we did this
replacement operation only at the tail of the network.

3



Model Params(M) FLOPs(M) Top-1 Acc.(%) Top-5 Acc.(%) Latency(ms)

PP-LCNet 0.25x 1.5 18 51.86 75.65 1.74
PP-LCNet-0.35x 1.6 29 58.09 80.83 1.92
PP-LCNet-0.5x 1.9 47 63.14 84.66 2.05

PP-LCNet-0.75x 2.4 99 68.18 88.30 2.29
PP-LCNet-1x 3.0 161 71.32 90.03 2.46

PP-LCNet-1.5x 4.5 342 73.71 91.53 3.19
PP-LCNet-2x 6.5 590 75.18 92.27 4.27

PP-LCNet-2.5x 9.0 906 76.60 93.00 5.39
PP-LCNet-0.5x* 1.9 47 66.10 86.46 2.05
PP-LCNet-1x* 3.0 161 74.39 92.09 2.46

PP-LCNet-2.5x* 9.0 906 80.82 95.33 5.39

Table 2. Indicators of PP-LCNet of different scales, where * means it is trained using SSLD[28] distillation method. Latency tested on
Intelr Xeonr Gold 6148 Processor with batch size of 1 and MKLDNN enabled, the number of thread is 10.

Model Params(M) FLOPs(M) Top-1 Acc.(%) Top-5 Acc.(%) Latency(ms)

MobileNetV2-0.25x 1.5 34 53.21 76.52 2.47
MobileNetV3-small-0.35x 1.7 15 53.03 76.37 3.02

ShuffleNetV2-0.33x 0.6 24 53.73 77.05 4.30
PP-LCNet-0.25x 1.5 18 51.86 75.65 1.74

MobileNetV2-0.5x 2.0 99 65.03 85.72 2.85
MobileNetV3-large-0.35x 2.1 41 64.32 85.46 3.68

ShuffleNetV2-0.5x 1.4 43 60.32 82.26 4.65
PP-LCNet-0.5x 1.9 47 63.14 84.66 2.05
MobileNetV1-1x 4.3 578 70.99 89.68 3.38
MobileNetV2-1x 3.5 327 72.15 90.65 4.26

MobileNetV3-small-1.25x 3.6 100 70.67 89.51 3.95
ShuffleNetV2-1.5x 3.5 301 71.63 90.15 -

PP-LCNet-1x 3.0 161 71.32 90.03 2.46

Table 3. Comparison of state-of-the-art light networks over classification accuracy. Latency tested on Intelr Xeonr Gold 6148 Processor
with batch size of 1 and MKLDNN enabled, the number of thread is 10.

3.4. Larger dimensional 1× 1 conv layer after GAP

In our PP-LCNet, the output dimension of the network
after GAP is small. And directly appending the final classi-
fication layer will lose the combination of features. In order
to give the network a stronger fitting ability, we appended a
1280-dimensional size 1 × 1 conv(equivalent to FC layer)
after the final GAP layer, which would allow for more stor-
age of the model with little increase of inference time.

With these four changes, our model performs well on the
ImageNet-1k[27], and table 3 lists the metrics against other
lightweight models on Intel CPUs.

4. Experiment
4.1. Implementation Details

For fair comparsions, we reimplement the models of
MobileNetV1[14], MobileNetV2[15], MobileNetV3[20],

ShuffleNetV2[17], PicoDet[29] and Deeplabv3+[8] by Pad-
dlePaddle. We train the models on 4 V100 GPUs, and the
CPU test environment is based on Intelr Xeonr Gold 6148
Processor with batch size of 1 and MKLDNN enabled.

4.2. Image Classification

For the image classification task, we train PP-LCNet on
ImageNet-1k[27], which contains 1.28 million training im-
ages and 50k validation images of 1000 classes. We use
SGD optimizer with weight decay set to 3e-5 (4e-5 for large
models), momentum set to 0.9, and batch size of 2048.
Learning rate is adjusted according to a cosine schedule for
training 360 epochs with 5 linear warmup epochs. Initial
learning rate is set to 0.8. In the training phase, each im-
age is randomly cropped to 224×224 and randomly flipped
horizontally. In the evaluation phase, we first resize an im-
age to 256 along the short edge, then apply a center crop

4



of size 224 × 224. Table 2 shows the PP-LCNet’s top-1
and top-5 validation accuracy and inference time of differ-
ent scales. Furthermore, when the SSLD[28] distillation
method is used, the accuracy of the model can be greatly
improved. Table 3 shows the comparison of PP-LCNet and
state-of-the-art models. Compared with other light models,
PP-LCNet has shown strong competitiveness.

4.3. Object Detection

For object detection task, all models in Table 4 are
trained on COCO-2017[30] training set with 80 classes and
118k images, and evaluated on COCO-2017[30] validation
set with 5000 images using the common COCO AP met-
ric of a single scale. We used the lightweight PicoDet de-
veloped by PaddleDection3 as our baseline method. Ta-
ble 4 shows the object detection results of PP-LCNet and
MobileNetV3[20] as the backbone. The entire network is
trained with stochastic gradient descent (SGD) for 146K it-
erations with a minibatch of 224 images distributed on 4
GPUs. The learning rate schedule is cosine from 0.3 as base
learning rate for 280 epochs. Weight decay is set as 1e-4,
and momentum is set as 0.9. Impressively, the PP-LCNet
backbone greatly improves the mAP on COCO[30] and in-
ference speed compared with MobileNetV3[20].

Method Backbone
mAP
(%)

Latency
(ms)

PicoDet

MobileNetV3-large-0.35x[20] 19.2 8.1
PP-LCNet-0.5x 20.3 6.0

MobileNetV3-large-0.75x[20] 25.8 11.1
PP-LCNet-1x 26.9 7.9

Table 4. Object detection results on the COCO dataset[30], mea-
sured using mAP@IoU=0.5:0.95 (%). Latency tested on Intelr

Xeonr Gold 6148 Processor with batch size of 1 and MKLDNN
enabled, the number of thread is 10.

4.4. Semantic Segmentation

For the semantic segmentation task, we also evalu-
ate the ability of PP-LCNet on Cityscapes dataset[31],
which contains 5000 high-quality labeled images. We use
the DeeplabV3+[8] developed by PaddleSeg4 as our base-
line method, and set the output stride to 32. The data
are augmented by randomly horizontally flip, randomly
scale, and randomly crop. The random scales contain
{0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}, and the cropped reso-
lutions are 1024× 512. We use the SGD optimizer with the
initial learning rate of 0.01, the momentum of 0.9, and the
weight decay of 4e-5. We use a poly learning rate sched-

3https://github.com/PaddlePaddle/PaddleDetection
4https://github.com/PaddlePaddle/PaddleSeg

ule with a power of 0.9. All the models are trained for 80K
iterations with the batch-size of 32 on 4 V100 GPUs.

We use MobileNetV3[20] as backbone for compari-
son. As shown in Table 5, PP-LCNet-0.5x outperforms
MobileNetV3-large-0.5x[20] by 2.94% on mIoU, but the
inference time is reduced by 53ms. Compared with larger
models, PP-LCNet also has strong performance. When PP-
LCNet-1x is used as backbone, mIOU of model is 1.5%
higher than MobileNetV3-large-0.75x, but the inference
time is reduced by 55ms.

Method Backbone
mIoU
(%)

Latency
(ms)

Deeplabv3+[8]

MobileNetV3
-large-0.5x[20] 55.42 135

PP-LCNet-0.5x 58.36 82
MobileNetV3

-large-0.75x[20] 64.53 151

PP-LCNet-1x 66.03 96

Table 5. Performances of semantic segmentation on
Cityscapes[31] validation dataset. Latency tested on Intelr

Xeonr Gold 6148 Processor with batch size of 1 and MKLDNN
enabled, the number of thread is 10.

4.5. Ablation Study

The impact of SE module[26] in different positions.
The SE module[26] is an attention mechanism between
channels, which can improve the accuracy of the model.
However, if the number of SE modules[26] is blindly in-
creased, the inference speed of the model will be reduced,
so it is worth studying and exploring how to properly add
SE modules[26] to the model. Through experiments, we
found that the SE module[26] will have a greater impact on
the tail of the network. The results of adding only two SE
modules[26] at different locations in the network are pre-
sented in the table 7. The table clearly shows that adding the
last two blocks is more advantageous for almost the same
inference time. Therefore, in order to balance the inference
speed, PP-LCNet only adds the SE module[26] to the last
two blocks.

The impact of large-kernel in different locations. Al-
though large-kernel can increase accuracy, it is not the best
to add it at all locations in the network. We have shown the
general rule of correctly adding large-kernel through exper-
iments. Table 8 shows the positions added by the 5 × 5
depth-wise convolution. 1 means that the depth-wise con-
volution kernel in DepthSepConv is 5 × 5, and 0 means
that the depth-wise convolution kernel in DepthSepConv is
3× 3. It can be seen from the table that, similar to the loca-
tion where the SE module[26] is added, the addition of 5×5
convolution at the tail of the network is also more competi-

5



Activation SE block large-kernel last-1x1 conv Top-1 Acc(%) Latency(ms)

% X X X 61.93 1.94
X % X X 62.51 1.87
X X % X 62.44 2.01
X X X % 59.91 1.85
X X X X 63.14 2.05

Table 6. The impact of PP-LCNet-0.5x’s performance on reducing a certain technology. Latency tested on Intelr Xeonr Gold 6148
Processor with batch size of 1 and MKLDNN enabled, the number of thread is 10.

Network SE Location
Top-1 Acc

(%)
Latency

(ms)

PP-LCNet-0.5x

1100000000000 61.73 2.06
0000001100000 62.17 2.03
0000000000011 63.14 2.05
1111111111111 64.27 3.80

Table 7. Ablation experiment of SE module in different positions.
Latency tested on Intelr Xeonr Gold 6148 Processor with batch
size of 1 and MKLDNN enabled, the number of thread is 10.

tive. Our PP-LCNet chose the configuration in the third row
of the table.

Network
Large-kernel

location
Top-1 Acc

(%)
Latency

(ms)

PP-LCNet-0.5x
1111111111111 63.22 2.08
1111111000000 62.70 2.07
0000001111111 63.14 2.05

Table 8. The impact of large-kernel in different locations.Latency
tested on Intelr Xeonr Gold 6148 Processor with batch size of 1
and MKLDNN enabled, the number of thread is 10.

The impact of different techniques. In PP-LCNet, we
use 4 different technologies to improve the performance of
the model. Table 9 lists the cumulative increase of differ-
ent technologies on PP-LCNet, and Table 6 lists the im-
pact of reducing different modules on PP-LCNet. It can
be seen from the two tables that H-Swish and large-kernel
can improve the performance of the model with almost no
increase in inference time. Adding a small number of SE
modules[26] can further improve the performance of the
model. Using a larger FC layer after GAP will also greatly
increase the accuracy. At the same time, perhaps because
a relatively large matrix is involved here, the use of the
dropout strategy can further improve the accuracy of the
model.

Strategy Top-1 Acc.(%) Latency(ms)

BaseNet 55.58 1.61
+h-swish 58.18 1.66

+large-kernel 59.09 1.70
+SE 59.91 1.85

+last-1x1 conv w/o dropout 62.50 2.05
+last-1x1 conv w/ dropout 63.14 2.05

Table 9. The impact of the increase of different technologies on the
performance of PP-LCNet-0.5x. Latency tested on Intelr Xeonr

Gold 6148 Processor with batch size of 1 and MKLDNN enabled,
the number of thread is 10.

5. Conclusion and Future work
Our work summarizes some methods for designing

lightweight Intel CPU networks, which can improve the ac-
curacy of the model while avoiding increasing the inference
time. While these methods are existing methods from pre-
vious work, the balance between accuracy and speed has
not been summarised experimentally. Through extensive
experiments and blessing of these methods, we propose PP-
LCNet, which shows stronger performance on a large num-
ber of vision tasks and has a better accuracy-speed balance.
In addition, this work reduces the search space of NAS and
also offers the possibility of faster access to lightweight
models for NAS. In the future, we will also use NAS to
obtain faster and stronger models.

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[2] Jia Li, Yafei Song, Jianfeng Zhu, Lele Cheng, Ying Su, Lin
Ye, Pengcheng Yuan, and Shumin Han. Learning from large-
scale noisy web data with ubiquitous reweighting for image
classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019. 1

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region

6



proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

[4] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 1

[5] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang.
Multi-task correlation particle filter for robust object track-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4335–4343, 2017. 1

[6] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, pages 568–
576, 2014. 1

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 1

[8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 1, 4, 5

[9] Ali Borji, Ming-Ming Cheng, Qibin Hou, Huaizu Jiang, and
Jia Li. Salient object detection: A survey. Computational
visual media, pages 1–34, 2019. 1

[10] Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and
Xiang Bai. Richer convolutional features for edge detection.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3000–3009, 2017. 1

[11] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 2

[12] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
2

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2, 3, 4

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 2, 4

[16] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
6848–6856, 2018. 2

[17] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 2, 4

[18] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1580–
1589, 2020. 2

[19] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 2, 3

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1314–1324, 2019. 2, 3, 4,
5

[21] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019. 2

[22] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-
wisely supervised neural architecture search with knowledge
distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1989–
1998, 2020. 2

[23] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 2

[24] Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise
convolutional kernels. arXiv preprint arXiv:1907.09595,
2019. 2, 3

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[26] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 3,
5, 6

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 3, 4

7



[28] Cheng Cui, Ruoyu Guo, Yuning Du, Dongliang He, Fu Li,
Zewu Wu, Qiwen Liu, Shilei Wen, Jizhou Huang, Xiaoguang
Hu, et al. Beyond self-supervision: A simple yet effective
network distillation alternative to improve backbones. arXiv
preprint arXiv:2103.05959, 2021. 4, 5

[29] PaddlePaddle Authors. Paddledetection, object detec-
tion and instance segmentation toolkit based on pad-
dlepaddle. https://github.com/PaddlePaddle/
PaddleDetection, 2019. 4

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5

[31] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 5

8

https://github.com/PaddlePaddle/PaddleDetection
https://github.com/PaddlePaddle/PaddleDetection

